

US009989677B2

(12) United States Patent

Shalaev et al.

(54) ULTRA-THIN, PLANAR, PLASMONIC METADEVICES

(71) Applicant: Purdue Research Foundation, West

Lafayette, IN (US)

(72) Inventors: Vladimir Shalaev, West Lafayette, IN

(US); Alexander Kildishev, West Lafayette, IN (US); Xingjie Ni, West Lafayette, IN (US); Satoshi Ishii,

Hyogo (JP)

(73) Assignee: PURDUE RESEARCH

FOUNDATION, West Lafayette, IN

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 243 days.

(21) Appl. No.: 14/427,052

(22) PCT Filed: Sep. 4, 2013

(86) PCT No.: PCT/US2013/057938

§ 371 (c)(1),

(2) Date: Mar. 10, 2015

(87) PCT Pub. No.: WO2014/039487

PCT Pub. Date: Mar. 13, 2014

(65) Prior Publication Data

US 2015/0309218 A1 Oct. 29, 2015

Related U.S. Application Data

(60) Provisional application No. 61/696,643, filed on Sep. 4, 2012, provisional application No. 61/722,669, filed on Nov. 5, 2012.

(51) **Int. Cl.**

G02F 1/03 (2006.01) **G02B 26/00** (2006.01)

(Continued)

(10) Patent No.: US 9,989,677 B2

(45) Date of Patent:

Jun. 5, 2018

(52) U.S. Cl.

CPC G02B 5/008 (2013.01); G02B 1/002

(2013.01); *B82Y 20/00* (2013.01); *Y10S*

977/834 (2013.01)

(58) Field of Classification Search

CPC B82Y 20/00; B82Y 15/00; G02B 5/23;

G02B 26/001; G02B 21/244;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0161589	A1*	7/2005	Kim	B82Y 20/00
				250/216
2005/0233493	A1*	10/2005	Augusto, Jr	G02B 1/005
				438/51

(Continued)

OTHER PUBLICATIONS

Genevet, P., et al., Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Applied Physics Letters, 100, Jan. 31, 2001 (2012); doi: 10.1063/1.3673334.

(Continued)

Primary Examiner — Dawayne A Pinkney (74) Attorney, Agent, or Firm — Purdue Research Foundation

(57) ABSTRACT

An ultra-thin planar device is used for arbitrary waveform formation on a micrometer scale, regardless of the incident light's polarization. Patterned perforations are made in a 30 nm-thick metal film, creating discrete phase shifts and forming a desired wavefront of cross-polarized, scattered light. The signal-to-noise ratio of these devices is at least one order of magnitude higher than current metallic nano-antenna designs. The focal length of a lens built on such principle can also be adjusted by changing the wavelength of the incident light. All proposed embodiments can be embedded, for example, on a chip or at the end of an optical fiber.

21 Claims, 6 Drawing Sheets

